CALCULATION OF A TUBULAR ELECTRON BEAM
IN AN AXISYMMETRIC MAGNETIC MIRROR

V. N. Danilov

A solution obtained by the method of averages [1] makes it possible to calculate a helical beam in a
weakly nonuniform field. In the present paper, an approximate solution for a tubular helical beam in a
weak axisymmetric magnetic mirror [3] is obtained with allowance for the space-charge field. The solu-
tion is obtained by successive approximations with respect to the ratio g, of the characteristic width a, of
the beam to the characteristic dimension of the external-field nonuniformity L,, under the assumption that
the beam may be represented in the form of two subfluxes with a single-valued irrotational field of the com-
mon pulse, p in each p= vy,, . The first approximation is obtained in the general case, and second
approximations for beams with a small and with a large space charge.

1. Basic Equations. By representing the common pulse p(y, ;) and the charge density 0(1,2) of a two-
flux beam in the form

p(l,%) =V vj: Vw1 9(1,2) = 1/2 (P __l’. 6) (1 1)

the following equations may be written for a nonrelativistic axisymmetric beam in cylindrical coordinates
(r, 4, z):

witwlrt=0=210—v2—0,2— A2, wp,+ww,=0 1.2)

Wp=0w/[Or, w,=0w/8z, v,=dv/or, Vv, =00 [0z

1 5 Lo a
- a—r’"’r’!‘ﬁwz}(f),6)+{T‘a—;rvr+gv,}(6, p)==0 (1.3)
_ 4 19 8 e
Ap=4xp, AA= ol A:T—a‘;‘ra_-~ i (1.4:)

Here, n>0 is the ratio of the charge to the electron mass, ¢ the electric field potential, p>0 the to-
tal charge density of the beam, (¢/n)rA the sole azimuthal component of the magnetic field potential, which
is laid off from the cathode (on the cathode surface (K), according to our assumptions, Ag=0); ¢ is the
speed of light. The equations (1.2) are equivalent to two energy integrals, while (1.3) is equivalent to two
continuity equations written in accordance with (1.1) for the first and second subfluxes.

1.1°. The small parameter g, of the problem may be explicitly defined by converting (1.2)-(1.4) to

a system of coordinates s, ¢, I which is coupled with the beam

r=R()+sz', z=2Z()—sR, Z' =dZ/dR,R =dR/dl 1.5

where ! is the arc length along 4 =const on the axial surface (s=0 of the axis); the surfaces ! =const are
cones orthogonal to the surface s=const. The metric of the system s, 4, I is defined as follows [2]:
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Fig. 1

% r2d0% L det = d® + (R J- 22 d02 - (1 — ks)2 dI2 , k=R" | &' (1.6)

Here, k(l) is the curvature of the axis in the meridional plane. Assume that the axial surface is suf-
ficiently smooth and that it is situated inside the beam in such a way that sy <Ca, is the expression for the
outer boundary, and s (}) = — a, the expression for the inner boundary of a tubular beam (Fig. 1).

Written in 8, ¢, ! coordinates, Eqs. (1.2)-(1.4) have the form

2 2 . .
Pt e = O =g — ol — A, py=— ;’é;’: . 1.7
8 3
[7] a
w= Swsds-l—w_,w,_:‘:—gl‘w, UZ=V+8—6l—Svsds (1.8)
S 0
Q eJ’
W(pws-l-&)s):;‘l—eT, VG(ﬁws—-]—pvs):E—m (1.9)
$ s
v v
Q= S (bv, + epw)) 5~ Rds, J =2z S (pvl—l—sﬁwl)TRds (1.10)
s— ’ 5—
A
Ap=4np, AA=¢e*—5, o=1-¢ks, v=1+ek,s (1.11)
1 (0 8 &8 v 8 _z ,_ 80
AE:;{%?WE&?@?RTW}‘ kbe=F., U= (1.12)

Here, and in the following, ‘a prime denotes the derivative of ! for a fixed s. Integration over s has
been performed in the continuity equations (1.9), on account of which, I, T, as well as V, w, are arbitrary
functions of .

In the system (1.7)-(1.12), the smallness sign e is put in those places where the parameter ¢, appears
as a result of the transition to dimensionless quantities.

§/0x, 1)Ly, KLy, R[L,, e4=a4/L, (1.13)

Thus, we arrive at the case of a tubular beam with a large inner radius R, which moves in a mag-
netic field with a large-scale nonuniformity L,

1.2°, At the boundaries of the beam, the conditions under which the oscillation rate wg, wy, which
distinguishes the subfluxes, vanishes can be written as
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w_ =0, w,=w, O . =0,=0 (1.14)

and the discontinuity conditions for the total current of the beam as

e, =9aRS, 01l Jo=J, =0, 1>, 1. 15)
Here, and in the following, +, - denote values at the outer and inner boundary, respectively; an

asterisk denotes the constants of the problem. Function 2 defines the sources at the inner boundary of

the beam; this boundary, according to our assumptions, coincides within the region 0 <I<I, with the cathode

surface (K). As can be readily seen from (1.9), % is equal to (vof);. , where j is the normal component

of the emission~current density.

Within the framework of a two-flux approximation, the cathode may be taken as g narrow strip of
width x which corresponds to the transit time of the outermost electron from the left in the scheme shown
in Fig, 1, a. Here, the single-path region of the flux 1) (where 6= p) on the trajectory of the outermost
electron must be joined with the two~path region of the flux 2) in the free beam (where % =0). The forma-
tion conditions, however, may be selected such that v<¢,® in the region 1); then, within an accuracy to
&, the narrow region 1) may be neglected, and the second condition in (1.15) may be taken into considera~
tion. If the cathode is selected wider, we get a multiflux beam (scheme 6 in Fig. 1). For v, 1 <1t
however, a zero velocity at the cathode for both fluxes is fulfilled within an accuracy to &, and with the
same accuracy, the real multiflux beam can be replaced by a two-flux beam with the condition (1,15) in the
0<l <1, region of the cathode.

1.3°., The solution of the system (1.7)-(1.12) may be sought in the form of a power seriesine with the
aid of successive approximations. Then (correct to &), from (1.11) for the azimuthal velocity A we easily
get

A=Qs+ T +eBys?+ &2 (Cys*+ Dys?), 2By =(k—k)Q

(1.16)
T RIVY 1 (RQY
ZDHEF'—(—F)“, GCHE[Z(kZ——kkz—{—kzg)—[—'ﬁjIQ———R—'
Q=0Q(), T=T(), Q+ekl=(@/)MHN (1.17)

where Hlo is the tangential component of the magnetic field intensity at the axis (s=0). However, the second
approximation for the entire problem is too cumbersome, In order to simplify the calculation, the "small-
ness" under p should be placed in front of every parameter in (1,7)-(1.12), and (1,16): p(w) for w, u(V) for
V, and so forth; for example from (1.7), (1.9) and (1.15), it follows that

p(o) =2 p(E)=¢ p =c¢ (1.18)

By assuming a concrete y, it is possible to identify simple cases of the mode of propagation of the
beam; thus u(p) =g, if 4mmp is of the order of g, Q2.

2. First Approximation. Within an accuracy to &, using (1.16) and (1.18), Eqgs. (1.7)-(1.12) reduce
to the two equations

w8 == 0 — V2 om 2 (Q5 - T)2 e BehsV2 — & (k — k) (@5 + ) Qs? 2.1

o/ ds = <E+4n1$ws‘1ds> [Hdek—kysl, E=E(Q) (2.2)

where E(Z) is the normal component of the field intensity at the axis. Written in the variables 7=7(s,{), I,
Eqs. (2.1) and (2.2) take the form

ST s = (0p/d) Q2T /Q— ekV2Q2— 5 (k— k) (I'/ Q4 %ss) s
N0p/0s) = (@R +nE) [1+et—k)sl, o=4innlQs (2.3)

S=0s5]0t=wg [Q, v =07/0=—(35])(Q]ws) 2.0
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2.0

T As a result, we have one equation for s(7, )
< DY
SRR/ /
s ts=or+A+e(k—k)s(@r+A—3s), AME=nE—QI —ekl?
16 {f -
. The solution of (2.5) can be written within an accuracy of
o oo/ & as follows
12 I
< \ s=ot B, A —c)te(k—k,) [(A=B) (1 —c,—es?)
0.8 (Q*/B)"'ﬁ‘Z“‘ + a2 (1 — Gy 1/‘-’172) - I/ZaB (Ts'c - TZCT) + I/Zu;“ (‘I:’ZST -+ e, — 2t
kil
% & o) =2 (= o, —Yore) +Bh (o, —5.0), B=BE. A=hA() (2.6)
on E— '
S ] w, /Q=5=a+Be,+As, Fek— k) [(A2—BY (s, —ste,) —a? (T —s5,)
‘ 9- //Z - — 1a0B (s, — e, 3 1%) + Yook (15, 4 v2, 4 20, — 2) — M2 (s. —TC,)
00 0.4 08 12
Fig. 2
2.1°,

+BA (e, — 125 2—7s)]

s, =sinv,
Let the axis be located symmetrically with respect to 7

2.7
¢, =0037, $;=sinf, c¢y=-cosO 2.8)
To=—r=0(), TE=0=0 sg=s(+0, 1 2.9)
By placing the last conditions in (1.14) on (2.7), we get
o - Boy = — & (k — k,) & [Y/ait (855 + 82 -+ 2 — 2) - B (6 — 1 4 2552 — Bsp)]
Asy=—& (k—k,) [(A*—PB?) (55— Sgcq) — 22 (0 — 59) — 1208 (39 — Boy -+ B255) — A2 (5—0cy)]
within an accuracy of &, yield

sy =date(k—k)Ae,

(2.10)
From (2.10) it follows that u(\)=¢, provided u(s;)=1. Tn this case, conditions (1.14), (1.15) and (2.9),
ap = B (s — Ocq)
Aa = B2 [¢g? — 3facy+ 3/aBca?(1 — cp) 5571

— 1128 (y -+ 1) € + 2 + YaBo0q]

o =— Bce
& == B2 (3fafog?sg 1 — ¢ — *facg — /8%y +1)
B2[0 (1 + 264%) — Bsgcy] = wy / 2,

aRVO=nJ Q"2
A=eb(k—k), hago<lw
Figure 2 gives plots of dimensionless relations whick depend only on 6

(2.11)
B e Ao Vo, 20
R R TR Vg UF

nQ
RQ? o B\
Yo=37; (T + _>

(2.12)
The last quantity is proportional to the electron spinning energy ¢,. The quantity 2 2% (Qm™
cyclotron frequency (1.17).

decreases from 1 to 0.67 with an increase of the space charge (8 — 7). The dependence of the beam param-
eters on an increasing magnetic-mirror field is clearly seen from (2.12), where @, correct to ¢, is the
of the beam

2.2°. The case p(s)<e can be somewhat simplified by placing the axis on the inner boundary
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In accordance with (2.6), (2.7) and (2.13), the conditions (1.14) and (1.15) yield

G =T ) (= o) el — k) [t — T s
—1%,) +ah (8] —Te, + T+ 28,0, — 2v) + A2 (2e, — 2 — 5.2+ 21s)]},
{5.}4. ={a (1 - CT) -+ xsr + 81/2 (k - kz) [o? (sr —2r— e, + T2s'\: + 23161)
- ah (3rs, - vi, — 4s.2) -+ A2 (2Te, — 25,0 B

(2.14)

w, = Q{22 (3foT — 25, + Yas_¢) oA (1 —c )2 - 1A (v —s.6,) & (b —k,) [a® (375 -

— 8+ 20, — 2 — 1ot 2 |- Yo 2 4 Fe 2 — 2fy — Lst?) - a2h (s, — TP 0, +TC, — 8,

T+ 8,6,— 2T 258 - 1e. ) 4 A% (215, — 2Ts ¢+ Vot%5 2 — 4 4 Bc, — 2¢.%)
+ A8 (’5'5‘1_.2 _ 1/217 -+ 1/26‘.r . — 2/38,:3)])+ = w* (2 .15)
+=Ye (R /m)aV {v + 28k [0 (v —c 1)+ A (T— )], (2.18)
For small x, from (2.14)-(2.16), it is easy to obtain
T, =2(—ex), x=u/(k—k,)[h—3a?/A} na]
302 4 AP == 1wy [ (AQ) - & (k — k) (A + 6m0d)
54 == g0 — & (k — k) (dno*} 3ad), T, =(Q2/n) oV {5 + & [tk (A -+ mor) — =]} 2.17)
1t should be noted that at the singular point at the boundary

0D s =@ =0 (s"=s=0 (2.18)

there may occur a branching of the beam boundary and, therefore, of the beam itself. If (2.18) is fulfilled
over a finite segment, for example at the lower boundary, then a two-stream mode is possible, where the
solution {2.14)-(2.16) for 7< 0 describes the second beam when it adjoins the first beam from below along

the boundary s=0. In this region we have A=0, while a current across the boundary is possible (Z#0).

3. Small Space Charge, Second Approximation, Setting (D) =¢, in correspondence with (1.9) and
{1.8), we have

nv)=¢e pE)y=pd)=2¢ pE=p@=c¢ 5.1)

From (1.9), (1.11), with the aid of (2.2) and (2.4), it is easy to get

a ’
[1— & (b — kp) s — e2hls?] 1 o = NE + ev@ — €2 (1 / R) S (R'Y ds 3.2)

3.1°. The zero approximation which derives in the case of (3.1) from (1.7)-(1.12), (1.16), (2.4),
and (2.9), (1.14) has the form

S=Bsr’ wszgﬁcv w=1/08? (T_'_Srcr)’ 0 = Yom, B:B(l) (3:3)

Using (3.3), (1.7)-(1.12), (1.16) and (2.4), together with the conditions (1.14) and (1.15), it is not
difficult to calculate the following values;

V= kpsQ/wy,  wym—wikgs, v =Vhgs, kg= B/8
v, =V + 82 1fy (Vhy) s? (3.4
Re') = (RU') + (s/m) (QTYR], U =T+ V4 Qf (3.5)
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J=2RIY/Q(r—1), Q=ZIRF/QUT =1 T? (v, — 1)
— 3y IREp (* — s %), T=(—r1)/{(t, — 1)
Rvspw, == IR — 82 [(RZV | Q) (T — YaT?) (v, — 7_) — Y2 (RIkg) s* + Vs (RIkgs 2)),

Sw, =3 (1—7T) (3.6)
w2 =2np — (Qs + T2 — V2 — g2s [AV? 4 (Qs + ') Bys] — 2 {[V2 (kg% + 3k?) ) ]
+V (Vkg) 152+ 2(Qs + ) (Cys® + Dys?) + Bys' + v 3.7)

Differentiation of (3.7) with respect to s leads with allowance for (2.4), (3.2), (3.5) and (1.16) to an
equation for the function s(t, 1)

s" o s=e[at 4 (& — Yas?) (k — k)] + €% (k — k) suv — €2 (Ays + Byps? + Cs?)
. nE—QT — kP2 =t (k— k) @
QA= (/R (RUY — (b — kP EQ? 4 V2 (kg®+ 2%+ bk, + k)
+VV'hy+D2R2— (I'/R)(RI'Y + QB?, k, =Z' /R
@B, = 2QTR2— Q" — QI'kp, + QT, kp=R/R
Cyy = Yo (1102 — 14kk, - 11k %) — 2/sR™2 — 2k2 =33 [Q"/ Q - (' / Q) k] 3.8)

3.2°. The solution of {(3.8), correct to &, has the form
s=Bs, Fg{a(v—s)+(k—k)[E—PB)(1—c,)+ YB% 2] 3.9)

Analysis of the first-approximation of {(3.9) for the conditions (1.14) shows that it is permissible to
set

=Y tez, pE)=1, E—FE—k)=e8 pl=1

(3.10)
Solving (3.8) with allowance for (3,9) and (3.10), one obtains without difficulty
s=Bs, -+ efa(t—s) 4 Yo (b—k;)B%. 2 +eB[a(k—k)(2—2, —s2
- 1/2 T8, + 1/2 Tzcr) + C (1 - 01:) - 1/2 Aw (5'_: - Te'\:) - 2/3BwB (1' —Ce __1/2 512)
— o Dyf? (5.5 — 3fa e - a5 ¢.?)] 8.11)
s=Be,t+efa(d—c) - (E—k)B% c ]+ eBla(k—k) BCls, — 250,
+ Yo e, — Yo ) - Lsg — Vs Ayvs, — s By (5, — s, ¢} — ¥ Dyf?s_ (v —s,c,)
Dy=cy+ % (k—k) (3.12)
The conditions (1.14), (2.9), and (3.10)-(3.14) make it possible to obtain
s, =k B+e(an—1)a—e 2B (Ay 17/ DyB — a7}
4 Ype (b — k) B2 4 B [(Yfo 12 —Yamt o) a (b ~— ky) s ByB] (3.13)
z=a/B (-0 /B)—eYax (Ay+ % DyB? (3.14)
(8.15)

= (Ysnr—1)a(k—k,)+ 2B, )
Further, from (1.8), (3.10), (3.11) and (3.14) it is possible to calculate the invariant w+, and from
(1.10), (3.4), (8.6), (3.11) and (3.15) the current J+

w, [Q="/nB% & d—maf e [(fn —4) ot + My mft (k — k)
— /s 73 (A + %5 DY) (3.16)

T, =2mRI (V[ Q) (1 42 2/ n) v+ o332 (2k2 — Yo ok, — kg + Ya kg V'V —I' [
— R R)}} + e2x [Ye ZREGB? — 2 12 (V / Q) (ZRV / Q)] (3.17)

The formulas obtained are suitable for calculating all the parameters of the beam with an accuracy
to &, provided the position of the axis is known.
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From (3.8), (3.10), (3.2), (3.5) and (1.16), one obtains the relation

N (VpZ2 — ¥, R) =ckin?

s=(

ek 20 4 202

MY = 2np — A2, Wy = (0F/0r) ¥, = 0¥/ 02),, Q=(04/0),_,

§=0?

(3.18)

which constitutes the equation for the axial surface. In the zero approximation, the axis obviously runs
along the lines of force of potential ¥, without allowance for the space charge. In the following approxi-
mations, one must take into account the space charge field in ¥ and the terms in the right side of (3.18),
as defined by (3.14)-(3.17). To prevent the beam from being reflected from the mirror, and to prevent
its branching, it is necessary to eliminate both the regions where ¥ (8, Z) < 9%?, and the singular points
of the ¥ field at the axis, in which ¥, = ¢, =0.

3.8°, In the absence of a space charge, the field can be represented in a form analogous to (1.16)

@:U+Es+sBHsz+sz(cEss+D'qu), U=U(), E=E()
2B, =(k—k)E, 2Dg=—(RU)/R

6Cy =2 (k* — ki, - k) E — (RE'Y [ R (3.19)

Changing to the variable T in accordance with (2.4) is unnecessary. Equations (3.3}, (8.4), (3.6) and
(8.7) remain valid, provided g and T are treated as parameters, and the following substitutions are intro-
duced in all the approximations '

s=Bs, s,=4B, T,=A%n B=F{

(3.20)
From (3.7), (3.4), (3.19), (1.14) and (3.20) it follows that:
we=Q B2— )2 {1+ Vae (k— k) s + Y282 (Ag + Bgs - s} (3.21)
A @ = V2 (kg - 262 - ki, + k') + Vg -+ (2QCy — By?) B2+ 2IDy
— 20Dy Bp@=20Dy +20C — 2MCy,  Co =20y /Q— kg
V2 = 20U — T2 — QB — 8243202 (3.22)
NE — QI = ek @nU — [?) — &% (k -+ k) QB2 + /5 82B,,Q%" {(3.23)

where, by analogy to (3.18), Eq. (3.23) is here the equation for the axis that passes through the center of
the beam. The beam half-width 3 is determined by the invariant wx

Bre=h2{l — s e2(Ag +YiCh?}, R =(2/m)(w,/Q)

(3.24)
The current of the free beam (T =0) is determined from (3.6), (3.20) and (3.21) as follows
Ty =20R (V] Q) {1 — 2 2 Ag, +- 822 [k2 -1 Yo ok, — Jeg? -+ Vs (k — k) — 1y Cy
FMaky V')V —1' [T =R [R)]) (3. 25)

For the mean rate of charge transport (ratio of beam current to charge per unit length) in the first
approximation, from (1.16), (3.6), (3.21) and (3.23), one gets

=V, (Ay=nE/Q—clpk(@V2+p0%/0Q, n(0H/ds)_,~=ekQ

This result correlates well with Eq. (2546) in [1] for the velocity of motion of the Larmor center,
under the assumption u(E)=¢ employed in [1].

4. Large Space Charge. With the aid of solution (2.14), the following regime can be identified;

=2+ Vepte, ul)=Ve (r.=s =0 (4.1)
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s=a(t—s)+ Veb[(1—c) +ela(k— k) a(s, — Toc+ 1%, ~—2v 4 25,_¢.,)]
+ el (b — kp) 0P (vs, — 252 — v%,) - £¥n,
s =a(l—c) -+ Ver[s, el (k— k) a (Bvs, + v2, — 4s_2)]
+elplb— k) (s, — 21 — 7w, + 1%, F 25 ¢ )+ ey 4.2)

This regime lends itself to computation with an accuracy to €/2. According to (4.1) and (4.2), condi-
tions (1.14) define two roots of 7,

p=—n— Vet (k— k) o+ ex [Han® + 5 (h— k) o]

g% =2 - 671 (k — k) o — & [02 (30 + 4ar?) (k — k,)% 02 - 4/ ok
o+ B (s — k) ] — & (3o1) 55" (2),

#=hia (4.3)
The invariant w_ is determined from (2.15) with allowance for (4.1), as follows
w, = aQ [302 - eA? — ebm (k — k,) a8] -+ 2w, (21) (4. 4)

The beam current is calculated from (1.10), (3.4), (3.6) and (4.2),

J,=2m2IR(V /) {24+ (Ve[ m) (p+ ¢) (1 + ehoka) 1 e4k (o 72 )
=+ & (Bfa ® - 5) a2 (252 - kk, - ko Yo ko (V7 /V 4= 1 /I R[R)]
— e [Ys 2 (V/Q) (RZV [ Q) + (s 7 + */s) REk,02]

The corrections sy, sy , wy in (4.2)-(4.4) are defined by the second approximation, which will be
obtained below.

4,1°, Within the framework of the zero approximation, one may use (3.4), (3.6) and (8.7, if in

accordance with (4.1) and (4.2), 27 is substituted for 7., and kg = o'/« for kg. The field is determined
from (1.11) with the aid of (2.4), (4.2), (38.4), (3.6) and (3.7

N (09 / 8s) = (avQ* + nE) [1 + & (k— k;) s 4 &2 (k® — kb, -} k,7) s7]
+ E208 4, af (RIk,) (RI)™ (Yo 18+ 2tc, — Zs. + Yot — Yo 5. ¢,)

— Y2 (REV [ Q) (BI)7 [v2 — 18 (6m) 2]} — &% (n/ R) S (Bg’) ds

‘ 4.5)
| S (RQY ds =1/3 (RQQ)" &* -/, [(QF)" R]' s>+ Y5 [(V2+ I?) R]'s-
+ Y2 QU (RQY (fat + Yss e — 35, —Te, — 1275 2+ a5 8)
— Rk, (s, —Te, + %, — o vs t—Yav+ Yas_c 4 Y55 9]

Differentiation of (3.7) with respect to s with allowance for (2.4), (4.1) and (4.5), leads to the equation

53" 4 52 = Yo (b — k) A? (4o, — Be.2— 1) + B? (2vs,— 52
— 0 [B g A ] 03 (s (k — )2 (20, — 3t c)
— 2,2+ Ap Vs Ag — Ve Ay + A7+ T [(k—E)*-
4 Ap (120 Yo Ap— Gl + 5. (26,2 -+ Ap +ahg — A+ A0
+1e, [2k 2+ Yo Agp — Yo Ag + Al —s.c, [2k,2+7s Ap — YsAg+a Al
5,2 [B,2 4 s Ap —Yu Ag — 3C, — Y (32 — ek, + 3] 475, [t A
30, — k2 — Y Bk + 3k, — 8Kk + 52 [— kg2 — Yo Ap + ¥ Ag +Cp
Yo (5K — Bk, + BEA))}
Ag = (REV Q) (RI&)Y, Ap=(RQ) (RQ)Y, Ag=(@/Dk,
A= RIkY BN, k=o' /o, k= Z'|R, kp=R/R

AR = VE 2R 4 Klip o g2 4 k) A VY (g -+ ) o+ (VF) - PR 4 (M)
BQ=2TR*+ (@ /QT —I"+Tkg
60, = 5k — 8kk + 5k,® + AR+ 2[(Q/ QP — (9 / D by + @7/ €

(4.86)
4,2°

The solution of Eq. (4.6) can be conveniently written in the form
' sy= 1o (b — k) A2 (Qts_ 26, — 2—5.2) + Ba? (o 15, — Y2 V%, %o+ s 6, Ya5.7)
— (v —2¢, - 2) aF [1?] + 03 {(1® + 65, — 6T} F [t8] — (v —s) Fit]
Yy (5, — o) F [s ]+ Y (v, 4 Te, — ) F[v6,] — Y3 (5. —5,6.) F [5,¢.]
3 (2T —2Yys, — T8 2 — a5, ) Flws Ml - Yy (PP, — s 10— 2/g1%,) F [v%.]
A+ Ya (53— oo, s ) F s3]+ Ve (k=K [Ha B — 32+ v 5,
41 23— 3) o, + s (v —2vs 2 —s, ) 1 0 1o (5. — 5.6}

4.7
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Here, F [f]denotes the coefficients in square brackets in Eq. (4.6), which are situated behind the
functions f. Solution (4.7) permits determination of the corrections in (4.3), (4.4)

55 (27) = {2 (b — k) A2 — 2B, — 4auF [v3)} -+ 303 {F [e,] - 12F [#9]
— F{u2s 4 (b — k,)? (4oe* 4 3/a)}
ws (20) [ Q = — 20 {B o - 4F [©]} + a0t /3 F [s_c.] — 6F [T] + 4 (4n2 — 15) F [7%]
— Y F fs,]— (famt—1) F [1e,] -+ ¥ F [1s 2] — /1 F [s.8] — (s 78— 3Jg) F [1%,]
+ 1/ [62 ;% — 550/35] (k — k)%

From (4.1), (4.2) and (4.7) an expression for the upper boundary follows

8, = 20w — £4A (k — k) o2 4 &2 [ a8 — 35 (k — k) & (b + oz) +Vahat]
-+ &t {(k — k) @ (24 4 ax) — 2aB, — 4F [v2]) + el {(8n? — 12) F [v3] — 2F [7]

— Fls )Y Flue] 4 F [vs.?] — (s — Vo) F [T%.] =2/ F [5.7]
+ (k= k2)* (25 4 T1a)]

If the axis is selected from (2.9), the example we have examined will be relatively simpler and the
obtzinable accuracy will be higher. However, the selection of the axis as performed in the present analysis
leads to simple expressions for the potential ¢ and the magnetic field intensity E at the lower boundary:

E_=E, e = I? 4 V2

The author is indebted to A. V. Gaponov for suggesting the problem and to A. N. Ievleva for her
help.
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